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Nonlinear photonic quasicrystals for novel optical devices
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Two well-known methods for the design of quasicrystal models are used to create
novel nonlinear optical devices. These devices are useful for efficient three-wave
mixing of several different processes, and therefore offer greater flexibility
with respect to the more common periodic nonlinear photonic crystals. We
demonstrate applications for polarization switching as well as multi-wavelength
and multi-directional frequency doubling. The generalized dual grid method is
proven to be efficient for designing photonic quasicrystals for one-dimensional
collinear devices as well as elaborate two-dimensional multi-directional devices.
The cut-and-project method is physically realized by sending finite-width optical
beams at an irrational angle through a periodic two-dimensional nonlinear
photonic crystal. This enables the creation of two simultaneous collinear optical
processes that can be varied by changing the angle of the beams.
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1. Introduction

Twenty-five years have passed since the discovery of quasicrystals in 1982 [1], and we have
yet to find a satisfying application that takes advantage of their unique combination
of physical properties [2]. Nevertheless, interesting applications are starting to emerge
that take advantage of quasiperiodic long-range order in metamaterials, or artificially
constructed quasicrystals.1 Most applications are based on linear photonic crystals, where
quasiperiodic modulations of the index of refraction of a material are used in order to
engineer its optical response. In particular, the fact that there are no restrictions on the
order of the rotational symmetry of a quasicrystal is used to obtain nearly-isotropic
photonic band gaps [4,5]. Here we focus on metamaterials in the nonlinear optical domain,
where recent technological progress has enabled us to modulate the second-order
nonlinear susceptibility with micron-scale resolution in various materials, such as
ferroelectrics (our focus here), semiconductors, and polymers. In these nonlinear photonic
crystals the modulation can be achieved by planar techniques, thereby offering either one
or two dimensions for modulation. Moreover, there are no photonic bandgaps in these
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metamaterials, because the first-order susceptibility, and hence the refractive index, remain
constant. The advantage of using quasicrystals in this case is not in their arbitrarily-high
symmetry, but rather in the fact that there is no restriction on the combinations of
wavevectors that may appear in their reciprocal lattices (provided that the symmetry of the
quasicrystal is not of particular importance [6,7]).

The novel optical devices described below are based on materials that facilitate the
nonlinear interaction between light waves in the form of three-wave mixing. These are
processes in which two incoming waves of frequencies !1 and !2 interact through the
quadratic dielectric tensor �(2) of the material to produce a third wave of frequency
!3¼!1�!2; or the opposite processes in which a single wave spontaneously breaks up
into two. Three-wave mixing is severely constrained in dispersive materials, where !(k)
is not a linear function, because the interacting photons must also conserve their total
momentum. Even the slightest wave-vector mismatch �k¼ k1� k2� k3 appears as
an oscillating phase that averages out the outgoing wave, giving rise to the so-called
‘phase-matching problem’. We have recently explained how one could fully solve the
most general phase-matching problem using well-known ideas from the theory of
quasicrystals [8]. The solution is based on the idea that in crystals,2 whether periodic or
not, continuous translation symmetry is broken. As a consequence, momentum
conservation is replaced by the less-restrictive conservation law of crystal momentum
whereby momentum need only be conserved to within a wavevector from the reciprocal
lattice of the crystal. The fabrication of an efficient frequency-conversion device is
therefore a matter of reciprocal-lattice engineering – designing an artificial crystal, from
the quadratic dielectric field of the material �(2)(r), whose reciprocal lattice contains any
desired set of mismatch wavevectors �k( j), j ¼ 1, . . . ,N, required for phase matching any
arbitrary combination of N three-wave mixing processes. In fact, the field amplitude
of the output beam, in each frequency-conversion process, is linearly proportional to the
amplitudes of each of the input beams, as well as the Fourier coefficient of the relevant
mismatch wavevector [10].

The idea of using a one-dimensional periodic modulation of the relevant component
of the quadratic dielectric tensor, for the purpose of phase matching a single three-
wave process, was suggested already in the early 1960s [11–13], and is termed
‘quasiphase-matching’. Since then this approach has been generalized using more
elaborate one-dimensional [10,14,15] and two-dimensional [16–19] designs, but only as
ad hoc solutions for multiple processes. We argue that engineering the reciprocal
lattice, of a nonlinear photonic quasicrystal, to contain any desired set of mismatch
vectors – a task that 25 years of research in quasicrystals have taught us how to
solve – provides the most general solution for the long-standing problem of multiple
phase-matching. Here we describe a number of novel optical devices that have actually
been fabricated using these ideas, and tested experimentally. In Section 2 we describe
devices that have been designed using the dual-grid method in order to engineer the
required nonlinear photonic quasicrystals. These devices attest to the general nature of
the quasicrystal-based solution to the multiple phase-matching problem. In Section 3
we show that for collinear devices, in which all the participating waves propagate in
the same direction, a certain degree of flexibility can be obtained by using a physical
realization of the cut-and-project approach, in which one generates the required
one-dimensional photonic quasicrystal by cutting through a periodic crystal in two
dimensions.
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2. Reciprocal-lattice engineering with the dual-grid method

After selecting the nonlinear medium of choice and the appropriate operating temperature
for a given frequency-conversion application, one can calculate the required set of
mismatch vectors �k( j), j ¼ 1, . . . ,N, that are to be engineered into the reciprocal lattice of
the nonlinear photonic quasicrystal. As we have described in [8], once these mismatch
vectors are known, one can use de-Bruijn’s dual grid method [20], as generalized by Gähler
and Rhyner [21] and later by Rabson, Ho, and Mermin [22,23], in order to design the
required quasicrystal. If the N mismatch vectors are integrally-independent, one simply
uses each vector �k( j), j ¼ 1, . . . ,N, to define a family of equally-spaced parallel lines,
separated by 2�=j�kðjÞj, and oriented in the direction of �k( j). The set of all N families
constitutes the dual grid, which is then used in the standard manner [24] to define a set of
N tiling vectors a( j), and to calculate the integral linear combinations of these tiling vectors
that form the vertices of the tiles in the desired quasicrystal. The final step is to decorate
each tile with an optimal motif, i.e. to decide which regions of the tile will be altered such
that the relevant components of the quadratic dielectric tensor �(2) are positive, leaving
the remaining background with an unchanged negative �(2). If the N mismatch vectors
happen to be linearly-dependent, one has to consider the pros and cons of selecting
a linearly-independent subset vs. using the full linearly-dependent set for generating the
dual grid [8].

2.1. One-dimensional implementation

As a rather simple demonstration of our general solution to the phase-matching
problem, we have recently implemented a three-wave doubler [25]. The reader who
is interested in implementing his or her own devices, based on our solution to the
phase-matching problem, is kindly referred to this article for a detailed pedagogical
explanation of each and every step. This is a one-dimensional device that is able to phase
match three collinear second harmonic generation processes simultaneously, taking three
input beams with wavelengths 1530 nm, 1550 nm, and 1570 nm, and producing three
output beams at twice their frequencies. We note that the three processes implemented in
this device are independent, and therefore could also be phase matched by fabricating
a sequence of three periodic nonlinear photonic crystals, one for each frequency
doubling process. Nevertheless, we were able to show that it is more efficient to
simultaneously phase match all three processes in a single quasiperiodic nonlinear
photonic crystal.

Here, we implement a more elaborate one-dimensional device utilizing our method,
which is a nonlinear polarization switch [26]. This device takes a beam of frequency !
and polarization y, propagating in the x direction, and converts some of its energy
into a beam of the same frequency, propagating in the same direction, but with
polarization z. It is a cascaded device [27] in which the output of the first process is
used as the input of the second process. The first is a standard (type I) second
harmonic generation process with !y þ !y ! 2!y, followed by a (type II) difference
frequency generation process, in which the lower-frequency waves have different
polarizations, 2!y � !y ! !z.

We implement the polarization switch using a LiNbO3 ferroelectric crystal at a
temperature of 150�C. Because linear dispersion is different for the differently-polarized
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beams, the mismatch vectors for the two processes are not equal, and are calculated

using tabulated properties of LiNbO3 [28,29] to be 0.39mm�1 for the first process, and

0.66mm�1 for the second process. Using a one-dimensional version of the dual-grid

method [25] we calculate the sequence of two tiling vectors, of lengths 10.70 mm and

7.63mm, that generates a one-dimensional quasicrystal with the desired wavevectors in

its reciprocal lattice. The actual one-dimensional quasicrystal is realized by using strips

of widths 10.70 mm and 7.63 mm, arranged in the x direction according to the

quasiperiodic sequence determined by the dual-grid method. We use numerical

optimization to find the optimal duty cycles for the two strips. We find that the best

efficiencies for the desired processes are obtained when using duty cycles of 0.5 and 1 for

the 10.7mm and 7.63mm tiling vectors respectively. This means that one half of each

10.7mm strip is positively-poled and the other half negatively-poled, while the narrow

7.63mm strips are completely positively-poled. A section of the resulting one-dimensional

photonic quasicrystal is shown in Figure 1b. For a single process the best efficiency is

achieved with a periodic nonlinear photonic crystal with a 0.5 duty cycle for its single

tile. In that case the relevant Fourier coefficient has the value of 2/�’ 0.636. This value

is comparable to twice the Fourier coefficients at the required mismatch vectors of the

polarization-switch device, shown in Figure 1a. However, here we phase-match two

processes simultaneously.

Figure 1. (Colour online) The polarization switch device. (a) The Fourier transform of the device,
showing strong Bragg peaks at the desired mismatch vectors, 0.39mm�1 and 0.66 mm�1. (b) A section
of the one-dimensional nonlinear photonic quasicrystal. The two colours represent the two different
values, positive and negative, of the nonlinear polarization. The smallest element size is 5.35 mm,
corresponding to one half of the 10.7 mm-wide strips.
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2.2. Two-dimensional implementation

Next we demonstrate the versatility of our approach by designing a multi-directional
second harmonic generator. This is a two-dimensional non-collinear device that takes three
beams of wavelength 1550 nm, propagating at angles of 0� and �20�, and generates three
output beams at the same directions at twice the input frequency. Using Stoichiometric
LiTaO3 and operating at 100�C, the magnitude of the mismatch vectors, for all three
processes, is calculated [30] to be 0.301 mm�1. The required two-dimensional photonic
quasicrystal must clearly be symmetric with respect to the propagation direction of the
central input beam. Using a two-dimensional version of the dual-grid method [8], we find
that it is generated by three tiling vectors, given in polar coordinates by
að1Þ ¼ ð7:54mm, ff0�Þ, að2Þ ¼ ð31:31mm, ff76:9�Þ, and að3Þ ¼ ð31:31mm, ff�76:9�Þ. This yields
two types of tiles: a rhombus whose edges are 31.31 mm long, and a parallelogram whose
edges are 31.31mm and 7.54mm long, the latter appearing in two mirror-related
orientations.

For ease of fabrication we limit ourselves to decorating the centre of each tile with a
positively-polarized circle, leaving the remaining background negatively-polarized.
We employ numerical optimization only for determining the radii of the circles for the
different tiles. We find that the best efficiencies for the desired processes, with the largest
magnitudes of the relevant Fourier coefficients, are obtained for using a maximally-
inscribed circle within the rhombic tile, and using no circles within the parallelograms.
An image of the decorated tiling, as designed by our procedure, is shown in Figure 2a.
The calculated spectrum of the device is shown in Figure 2b. The reciprocal lattice vectors
that phase match the three processes are indicated in this figure. The calculated
magnitudes of the Fourier coefficients for the three mismatch vectors are 0.1 and 0.19 for
the 0� and �20� processes, respectively.

3. Physical realization of the cut-and-project method

We have recently described an alternative scheme applicable to collinear devices [31], in
which one generates the required one-dimensional photonic quasicrystal by a process that
could be thought of as a physical realization of the cut-and-project method [32,33]. Here
we wish to elucidate some of its geometric features, and by doing so to emphasize its
advantage for producing tunable devices. The reader, interested in actual implementation
details of this scheme, is kindly referred to [31]. The basic idea is to fabricate a
two-dimensional periodic crystal and employ the cut-and-project method to obtain a
one-dimensional quasiperiodic crystal, capable of phase matching two independent
collinear frequency-conversion processes. The cut is realized by taking advantage of the
fact that the input beam is not an idealized plane wave of infinite transverse extent but
actually has a finite width W, for example with a Gaussian profile. Thus, the interaction of
the beam with the nonlinear medium is restricted to a strip-like region of width W along
the propagation direction of the beam. Only those lattice sites of the two-dimensional
crystal that fall within this strip in the transverse, or perpendicular (?), direction
contribute to the phase matching, and are effectively ‘projected’ onto a one-dimensional
quasicrystal along the propagation, or parallel (k), direction.

The Fourier transform of the original two-dimensional periodic crystal contains Bragg
peaks at wavevectors K that form a periodic reciprocal lattice. As we know from the
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cut-and-project method, the Fourier transform of the strip-like interaction region is

one-dimensional. Each two-dimensional Bragg peak at wavevector K gives rise to a

one-dimensional Bragg peak at the parallel component Kk of the original wavevector,

whose intensity depends on the perpendicular component K? of the same two-dimensional

wavevector. Because the Fourier transform of a Gaussian is also a Gaussian, if for

example the beam has a Gaussian profile and we ignore any spreading of this profile as it

propagates, then the dependence on K? is a simple Gaussian. Thus, given a pair

of collinear mismatch wavevectors, one simply needs to find the appropriate angle with

which to cut through the two-dimensional structure, so as to obtain two parallel

projections Kk with the required mismatch values, preferably of wavevectors K with

a small K? component. Thus, even with a prefabricated two-dimensional periodic crystal,

Figure 2. (Colour online) The multi-directional second harmonic generator. (a) Image of the device
made of circular motifs, superimposed with the underlying quasiperiodic tiling. (b) Calculated
diffraction diagram. The arrows indicate the reciprocal lattice vectors used to phase match the three
second harmonic generation processes.
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one has the ability to tune the device by varying the cut angle through the crystal, enabling
the use of one device for different combinations of frequency conversion processes.

To illustrate how this approach can be used, we consider a nonlinear photonic
crystal built upon an oblique periodic lattice, defined by the primitive vectors
að1Þ ¼ ð6:2 mm, ff�75�Þ and að2Þ ¼ ð7:4 mm, ff17�Þ, by associating a positively-poled circular
motif of radius 2.5 mm with every lattice point. We wish to phase match two collinear
second harmonic generation processes of fundamental beams with wavelengths 1550 nm
and 1047.5 nm. If we use stoichiometric LiTaO3 and operate at room temperature the
phase mismatch values are calculated to be [30] �k1 ¼ 0:297 mm�1 and �k2 ¼ 0:820 mm�1,
respectively. By varying the operating temperature we can change the required mismatch
wavevectors, and by selecting the propagation direction of the input beams we can vary the
projected Kk components. A simulation of all possible combinations of temperature and

Figure 3. Phase matching using the cut-and-project method. The calculated combinations of
temperature and propagation direction that satisfy the phase-matching requirements for two
collinear second harmonic generation processes using the oblique crystal, described in the text. The
working point conditions are denoted by the intersection of the two straight lines at input angle
�¼ 0� and temperature T¼ 23�C. The two simulated cases are: (a) for an input beam of wavelength
�¼ 1550 nm, where phase matching is realized by a projection of the (1, 0) reciprocal lattice vector;
and, (b) for an input beam of wavelength �¼ 1047.5 nm, where phase matching is realized by a
projection of the (0, 1) reciprocal lattice vector.
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propagation angles that satisfy the phase matching conditions for the two processes

is shown in Figure 3. The simulation was carried out for an interaction length of 1mm and

a 20 mm-wide square-shaped beam profile. Darker shades correspond to higher efficiencies.

Each parabola corresponds to a given reciprocal lattice vector K of the two-dimensional

crystal. The apex of the parabola corresponds to phase-matching using the whole

reciprocal lattice vector (K?¼ 0), while the other parabola points correspond to

projection-based phase matching (K? 6¼ 0). The intersection of the straight lines is the

desired working point of this device at room temperature, where both processes are

phase-matched simultaneously.
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Notes

1. We refer the reader to [3] for a precise definition of the term ‘quasicrystal’.
2. We refer the reader to [9] for detailed discussion on ‘What is a crystal?’.
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