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We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic
curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary
plasmonic phase mask, which provides the missing momentum between the two beams in the direction of
propagation and sets the required phase for the plasmonic beam in the transverse direction. We examine the
cases of paraxial and nonparaxial curvatures and show that this highly versatile scheme can be designed to
produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate
along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with
a direct measurement of the plasmonic light intensity using a near-field scanning optical microscope.
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Surface-plasmon polaritons (SPPs) are surface electro-
magnetic waves that are coupled to electron waves, which
propagate at the interface between a dielectric and a
metallic medium [1]. The ability to control and guide
plasmonic light waves opens exciting new possibilities
in photonics and electronics [2,3]. Specifically, nanoscale
on-chip technologies such as surface plasmon circuitry [4],
subwavelength optical devices [5,6] and nanoscale electro-
optics [7], as well as new applications in biology and
chemistry such as biosensing, optical trapping, and micro-
manipulation at the nanoscale [8], have attracted great
interest in recent years.
In the last several years, new types of plasmonic beams

have been realized that have unique properties. These
beams can be “nonspreading” (i.e., preserve their spatial
shape with propagation) as well as “self-accelerating”
(i.e., propagate along curved trajectories). For example,
the plasmonic Cosine-Gauss beam [9] is a nonspreading
beam that propagates along a straight trajectory, whereas
the plasmonic Airy beam [10–13] is nonspreading and
propagates along a parabolic trajectory. The latter is so far
the only self-accelerating plasmonic beam that has been
demonstrated, and it is restricted to a parabolic trajectory.
In this Letter, we address the question of whether it is
possible to create self-accelerating surface plasmon beams
that propagate along arbitrary curved trajectories.
The Airy function is an exact solution of the paraxial

Helmholtz equation or, equivalently, of the Schrödinger
equation for a free particle [14] that carries infinite energy.
An actual Airy beam, however, carries finite energy and is
obtained by truncating the infinitely long tail of the Airy
function by using an exponential or Gaussian window [15].
The truncated Airy beam preserves its shape and self-
accelerates, but only over a finite distance. Recently it was
shown [16,17] that free-space nonspreading beams, propa-
gating along arbitrary convex trajectories over finite dis-
tances, canbe realized.However, thequestion still remains as

to whether this concept, demonstrated so far only with free-
space beams, can be used for the case of surface plasmon
waves. If so, several fundamental challenges, owing to the
plasmonic nature of the waves, should be addressed.
First, coupling a surface plasmon wave from a free-space

wave requires a compensation for the missing momentum
between the two wave vectors, as the plasmonic wave
vector kSPP is always greater than that of the free-space
wave k0 [18]. Second, owing to the limited propagation
length of surface plasmons and the limited measurement
range of characterization tools such as near-field scanning
optical microscopes (NSOM), a significant acceleration
is required over a fairly short propagation distance
(typically < 100 μm), meaning that the paraxial approxi-
mation would not be valid. Third, while planar phase
plates readily provide a well-defined phase pattern for a
free-space beam at the entrance plane, the surface plasmon
is excited over a finite propagation distance, and therefore,
its phase cannot be simply defined at a specific one-
dimensional plane. Fourth and last, dynamic tools for
controlling the wave front of free-space beams, like spatial
light modulators (SLM), do not exist for surface plasmons.
Despite these fundamental and practical challenges,
we demonstrate here a robust method to excite self-
accelerating surface plasmons propagating along arbitrary
caustic trajectories. Specifically, we generate surface plas-
mons that propagate along several different polynomial and
exponential trajectories.
To address the obstacles mentioned above, we introduce

a two-dimensional binary plasmonic phase mask, which is
analytically described by the following equation:

tðz; yÞ ¼ h0
2

�
1þ sgn

�
cos

�
2π

Λ
zþ ϕiðyÞ

���
: (1)

The mask is modulated periodically in the direction of
propagation z with period Λ, and the resulting grating can
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compensate for the missing momentum mentioned
above. Furthermore, in order to excite a SPP that will
follow a caustic trajectory, the desired initial phase ϕiðyÞ≡
ϕðy; z ¼ 0Þ is encoded in the transverse direction y.
We emphasize that in contrast to planar phase plates for
free-space beams, which operate only in the transverse
direction, this binary plasmonic phase mask operates both
in the propagation direction and in the transverse direction.
It is now required to derive the initial phase ϕiðyÞ

corresponding to the desired analytical curve y ¼ fðzÞ.
The derivation is based on the principle that the caustic
curve fðzÞ can be constructed by multiple geometrical rays,
which are tangent to the curve itself [17]. In our case, the
transverse modulation of the phase generates these geo-
metrical rays at angles θðyÞwith respect to the z axis, where
dϕ

i
ðyÞ=dy ¼ k × sin½θðyÞ� [17]. This sets the relation

between the angle θðyÞ and the caustic trajectory fðzÞ to be

dϕiðyÞ
dy

¼ kf0ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½f0ðzÞ�2

p ; (2)

where f0ðzÞ ¼ dfðzÞ=dz. Under the paraxial approxima-
tion, this relation can be further simplified [16], thereby
enabling one to obtain analytic expressions for the trans-
verse phase of various trajectories. While this relation is
utilized to obtain the one-dimensional initial phase ϕiðyÞ
for the case of free-space waves, the generated plasmonic
phase mask is two dimensional for the case of SPPs. To
better understand how Eq. (2) and the geometrical rays
principle relate to the plasmonic phase mask and the
generated plasmonic beam, we offer a graphical represen-
tation of the construction of a caustic SPP, for the case of an
exponential trajectory, in Fig. 1(c). This representation is the
plasmonic equivalent of the representation for free-space
waves demonstrated by [17]. It can be seen in Fig. 1(c) that
the plasmonic phase mask generates geometrical rays at
different angles, which are tangent to the constructed caustic
SPP curve. The full discussion on exponential trajectory
caustic SPP is presented later in the text.
First we examine the case of trajectories under the

paraxial approximation and follow the procedure given
by [16] to derive the phase for the following curves:
y ¼ a1z1.5, y ¼ a2z2, y ¼ a3z3, and y ¼ b1, expðq1zÞ,
where a1 ¼ 34:1494 × 10−3, a2 ¼ 2.4691 × 10−3, a3 ¼
2.7435 × 10−5, b1 ¼ 5 × 10−7, q1 ¼ 40 × 10−3 are arbi-
trarily chosen constants (in micrometer units). For
example, for the trajectory of y ¼ a1z1.5 the required
transverse phase is ϕiðyÞ ¼ 9

4
ða1=2Þ2=3y4=3.

The fabrication of the plasmonic phase masks was done
by evaporating 200 nm of silver on a BK7 glass substrate,
followed by electron-beam lithography of the mask pattern
on PMMA (polymethyl methacrylate). A 50 nm silver layer
was evaporated above the PMMA, followed by a lift-off
process. The final device, shown in Fig. 1(a), consisted of a
50 nm thick binary plasmonic phase mask, on top of a

200 nm layer of silver. The experimental setup, shown in
Fig. 1(b), was composed of a fiber-coupled diode laser
(λ ¼ 1.064 μm), focused on the mask by a microscope
objective lens, and a Nanonics MultiView 2000™ NSOM
system that was used to measure the plasmonic light
intensity. All the plasmonic phase masks were designed
for free-space illumination at normal incidence, at which
the surface plasmon wavelength is equal to the period
of modulation Λ and the m ¼ 1 order of the grating
satisfies Eq. (2).
To simulate the intensity distribution of the generated

plasmon waves, we realized a numerical calculation based
on the two-dimensional Green’s function of the Helmholtz
equation. The experimental results and the numerical
simulations for the different curves, under the paraxial
approximation, are presented in Fig. 2, and it is clearly seen
that the experimental results are in good agreement with the
simulations. We note, however, that both numerical sim-
ulations and experimental results exhibit diffraction and
deviation from the target analytical curve, depicted by the
purple solid curve, in all of the examined trajectories. We
believe that this is a manifestation of the paraxial approxi-
mation used to derive ϕiðyÞ. In our experiment, all curves

FIG. 1 (color online). (a) SEM image of the fabricated binary
plasmonic phase mask for the case y ¼ a1z1.5. (b) Experimental
setup. (c) Geometrical representation of the construction of a
caustic SPP. Geometrical rays (white dashed lines) emanating
from the two-dimensional plasmonic binary phase mask (SEM
image) that generated the caustic SPP (NSOM measurement).
The mask and the measured SPP are for the case of an exponential
trajectory (the solid purple line shows the analytical curve).
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were designed to exhibit the desired acceleration within
80 μm, corresponding to the scanning range limit of the
NSOM system. This rapid acceleration is actually already
beyond the paraxial limit, making this method applicable
only to weaker accelerations, spanned on larger length
scales. We also note that all figures were rotated between 3°
and 5° as to align the coordinates of the target analytical
curves with those of the scanning NSOM system. We relate
the periodic intensity variations, transverse to the direction
of propagation, appearing in the experimental results within
the individual beam lobes, to interference between the
plasmonic beam and the back-reflected free-space beam
recorded by the NSOM; thus, they depend on the phase of
the plasmonic beam [19].
We therefore examined the nonparaxial case next by

following the procedure given by [17] to derive ϕiðyÞ using
Eq. (3), for the same analytical curves. In this case Eq. (3)
can be solved numerically in order to derive ϕiðyÞ. Both the
numerical simulations and the experimental results for the

nonparaxial case are presented in Fig. 3. Once again, the
agreement between the simulations and the measurements
is clearly seen, but this time the beam closely follows the
target analytical curve y ¼ fðzÞ. The small deviations of
the beam from the curve towards the end of the scan range
are attributed to the Gaussian shaped illumination of the
free-space beam, which results in a lower amplitude at the
edges, and can therefore be reduced by uniformly illumi-
nating the mask. Figures 3(d) and 3(e) show the results for
two exponential trajectories, each with different constants,
and both trajectories are shown in both figures for

FIG. 2 (color online). Numerical simulations and experimental
results for the following analytical curves derived under the
paraxial approximation: (a) y ¼ a1z1.5, (b) y ¼ a2z2, (c)
y ¼ a3z3, and (d) y ¼ b1 expðq1zÞ. The purple solid curves in
all figures depict the target analytical curve y ¼ fðzÞ.

FIG. 3 (color online). (a)–(e) numerical simulations and
experimental results for the same analytical curves presented
in Fig. 2, only this time derived for nonparaxial curvatures.
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comparison. In some of the measurements, a round halo
surrounding the plasmonic beam can be observed owing to
back-reflections of the free-space beam.
We can therefore conclude that for rapid accelerations

on such short distances the nonparaxial method is indeed
more suitable. Furthermore, this method is not limited
only to monotonically increasing caustic curves. In order
to illustrate the flexibility of the method, we show in
Figs. 4(a) and 4(b) (simulation and measurement, respec-
tively) a parabolic trajectory, but the initial transverse
phase is set at a plane that is 40 μm to the left of the
parabola’s vertex. The trajectory therefore bends down-
wards at first and then, after the vertex point, rises upwards
(see [18] for the mask image). This concept can be further
extended to generate two mirror-imaged trajectories recom-
bined after a certain distance [18]. This would be a two-
dimensional “area-caustic” or “area-bottle” beam version
of the “volume-caustic” beam demonstrated by [17], or the
optical bottle-beam demonstrated by [20] in free space, and
may enable us to trap particles to the dark area confined by
the caustic curves [8].
Next we analyze the design considerations of the optimal

plasmonic phase mask, with the main design parameter
being the number of periodic cycles within the mask. For
an ideal phase-only mask, the field emanating from the
mask should have a uniform amplitude and the required
one-dimensional phase ϕiðyÞ. While this is easily obtained
for free-space beams, reflected from a planar phase mask
or SLM, in the case of the plasmonic phase mask this
ideal state can be realized by applying the mask with a
single cycle. Figure 5(a) shows simulations of the result-
ing amplitude and accumulated phase emanating from
the single-cycle mask, for the case of a y ¼ a2z2.
Unfortunately, coupling SPPs via a single-cycle grating
is not an efficient process, and it results in a weak SPP
intensity. However, adding additional periodic cycles to
the mask results in two different effects—increasing the
coupling efficiency on one hand, but changing the resulting
amplitude and phase from their target values on the other
hand. These effects are presented in Fig. 5(c) for a mask
with nine periodic cycles. It can be seen that the amplitude
is not uniform anymore and the accumulated phase exhibits
a small increase at larger y values. The change in the

accumulated phase leads to a deviation from the target
analytical curve, and the change in amplitude yields a
change in the intensity distribution of the beam. These
results are presented in Figs. 5(b) and 5(d).
In order to understand the origin of these effects, let

us examine Eq. (1). The underlying assumption of that
equation is that the propagation direction z and transverse
direction y can be separated. However, since the plasmonic
beam is accelerating, the transverse modulation also has an
effect on the propagation axis. This is manifested in the fact
that the thickness of the mask’s grooves in the y direction at
the bottom of the mask is smaller than those at the top [18].
This means that the light density coupled at that area is
smaller, thereby leading to the unwanted variation in the
amplitude of the generated surface plasmon. To resolve this
issue we have considered a transformation of coordinates
coinciding with those of the accelerating surface plasmon
frame ~y ¼ yþ fðzÞ. This, however, yielded only a small
improvement. We therefore found that the optimal solution
is to limit the number of periodic cycles together with the
transformation coordinates, and this solution was already
implemented in the masks that generated the results for the
nonparaxial beams [18]. We do emphasize, however, that
implementing a single-cycle plasmonic phase mask can
circumvent these problems at the cost of reduced coupling
efficiency.
To conclude, we have demonstrated numerically and

experimentally the generation of self-accelerating plas-
monic light beams that propagate along arbitrary caustic
trajectories. We examined the cases of paraxial and non-
paraxial caustics and found the latter to be more suitable for
the case of rapidly accelerating plasmonic light beams. We
discussed the design limitations of the plasmonic phase

FIG. 4 (color online). (a) Numerical simulations and (b)
experimental results of a nonmonotonic parabolic accelerating
plasmonic beam.

FIG. 5 (color online). Expected and resulting amplitude
(red and blue curves, respectively) and accumulated phase (black
and purple dashed curves, respectively) emanating from (a) a
single-cycle mask and (c) a nine-cycle mask, for a y ¼ a2z2

curve. We show plasmonic beam intensity emanating from (b)
single-cycle and (d) nine-cycle masks.
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mask and found the crucial parameter to be the number of
periodic cycles used in the mask. We believe that this
demonstration of arbitrary self-accelerating surface plas-
mon waves will enable new exciting possibilities in
photonics and electronics at the nanoscale. For example,
these beams can enable the trapping and guiding of
microparticles along the arbitrary curves, or they can allow
one to circumvent an obstacle by designing a bypassing
caustic. Moreover, we expect the method will be used for
shaping the caustics of other types of waves, such as
surface acoustic waves [21], ground radio waves, electron
waves [22], etc.
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