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The spectral width of a nonlinear converter is usually thought
to be inversely proportional to the length of the nonlinear
crystal. We present a method to overcome this limitation us-
ing the concept of super-oscillations, thus creating an arbitrar-
ily narrow converter. A “super-narrow” frequency doubler
was fabricated by appropriate modulation of its quadratic
nonlinear coefficient, showing spectral and thermal response
that are narrower by 39% and 69% compared to the side lobes
and main lobe of the sinc function response of a standard fre-
quency doubling crystal with the same length. This is accom-
panied by corresponding reduction of the efficiency to 14%
and 0.79% with respect to those of the first side lobe and the
main lobe. We propose more advanced modulation patterns,
and discuss implications such as nonlinear filtering with
higher resolution than the standard crystal. ~© 2015 Optical
Society of America

OCIS codes: (140.0140) Lasers and laser optics; (190.0190) Nonlinear
optics.
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What limits the width of a frequency converter? Until now, the
limit has been set by the physical length of the converter. For
example, in a homogeneous nonlinear crystal of length Z, the con-
version efficiency as a function of the phase mismatch A% is pro-
portional to [1] sinc? (ATkL), assuming undepleted pump and plane
waves. Hence, the width is inversely proportional to the crystal
length. This is also the case for quasi-periodic [2,3] and 2D peri-
odic structures [4,5]. There are methods to broaden the width (for
example, chirped [6,7] or random [8] poling), but so far it has
never been shown how to make it narrower with respect to
the length-limited width. There are some applications that require
narrow widths, e.g., processing of densely spaced channels in
WDM optical communication systems [9,10], isolating a single
fluorescent line or a Raman-scattered line [11] in spectroscopy,
and generating entangled photons by spontaneous parametric
downconversion for quantum information applications in a well-
defined frequency [12]. The only available solution to date was
provided by increasing the crystal’s length. However, this solution
is not scalable, consumes a large physical size, and is limited by the
available length of crystals (a few centimeters at most). In this
Letter we show for the first time, to the best of our knowledge,
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how to overcome these limitations, and obtain frequency convert-
ers with arbitrarily narrow width, by bringing the recently intro-
duced concept of super-oscillations into the nonlinear optics
regime.

Super-oscillation refers to the phenomenon of a band-limited
function that oscillates faster than its highest Fourier component
[13,14]. Super-oscillating functions were used earlier to create
super-narrow antennas [15] as well as to focus free-space beams
[16,17] or plasmonic beams [18] to a subdiffraction central
lobe. Using a super-oscillating lens, it is possible to construct
an optical microscope that has subdiffraction resolution of 1/6
[19], and to create “nondiffracting” super-oscillatory beams [20].
Super-oscillations were also studied in the time domain, enabling
time-dependent subdiffraction focusing [21], as well as “super-
transmission” through absorbing medium [22]. Here we show
that using the same concept of super-oscillation, we can realize
a nonlinear frequency converter with arbitrarily narrow frequency
response, thus defying the limitation that was thought to be im-
posed by the Fourier transform relation between the interaction
length and the phase-mismatch spectral response.

Under the undepleted pump and plane wave approximation,
the amplitude of the generated second harmonic is given by [1]

Ay(Ak) = Kd33/ d(z)e**2dz, (1)
where k = iw,A% /nyc is the coupling coefficient (w, and 7, are
the angular frequency and refractive index of the second har-
monic, A4 is the pump amplitude, and ¢ is the speed of light),
z is the propagation axis, d3; is the nonlinear coefficient, and
d(z) is the modulation function of the nonlinear coefficient.
Assuming that we have a crystal of length Z, we can write the
modulation function as d(z) = f(z) x rect(3), where f(2) is
an arbitrary function. The second harmonic field is then given

by A,(Ak) = kL. F(Ak) ® sinc(%f), where sinc(x) = %
and F(Ak) is the Fourier transform of f(z). It appears that if
one wishes to have a frequency converter with a narrow band-
width, the best choice is the homogenous case f(z) = 1 or equiv-
alently F(Ak) = 6(Ak), since any other function for F will
result in a wider response once the convolution with the sinc

function rtakes place. In this case, 4(z) = rect(3); hence

Ay (Ak) = dssxL sinc(%f). This function consists of a central

lobe of width %”, and a series of side lobes of width 27”
Another commonly used option is to periodically modulate
the nonlinear coefficient, in order to achieve quasi-phase-matched
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interaction. In this case, f(z) = sign(cos(Akqz)), and therefore
Ay = ds3kLy 2 = sinc(L %). Here the sum is over the
odd 2 values only. This function is essentially an infinite series of
sinc functions, but for a given process we are usually interested in
a small region near one particular spatial frequency that quasi-
phase matches the interaction (which had initial mismatch of
Akyg). In this region, the spectral response has the same character-
istics as the homogenous crystal, i.e., a central lobe of width 4T” and
side lobes of width ZT” The same width is also obtained in quasi-
periodic [2] and 2D photonic crystals [4].

We now wish to design a crystal with a central lobe that is as
small as we wish. As we showed in Eq. (1), there is a Fourier trans-
form relation between the nonlinearity as a function of interaction
length and the second harmonic signal (or conversion efficiency)
as a function of phase mismatch. We therefore look for a super-
oscillating function in Ak coordinates, which remains band-
limited in its Fourier transformed (i.e., crystal) coordinates to
a fixed interaction length. Specifically, we aim for efficiency with

response of
LA 2
I, (Ak) (cos 12 b s) , 2

where 0 < s < 1 defines the offset of the cosine function [see
Fig. 1(a)]. This function has a central lobe of width Lil cos™!s.
It exhibits super-oscillation around A% = 0, since as s approaches
1 and Z; remains constant, the central lobe gets smaller, but the
maximum Fourier frequency remains Z; and is independent of
the width of the oscillation.

In order to realize a super-narrow frequency converter, the
quadratic nonlinear coefficient should be spatially modulated.
In ferroelectric crystals this can be done by electric field
poling [23,24], and in this case the modulation is binary, i.e.,
f(2) can be either 1 or 1. We design &(z) using methods that
were previously developed in binary computer-generated holog-
raphy [25]:

d(z) = sign(cos(Akyz + P(z)) - cos(wg(z))), (3)

where ¢p(z) and g(z) are arbitrary functions that determine the

converter’s phase and amplitude response, respectively, and
L

-5<z< % The amplitude is then written as an infinite sum,

for which the first order (around Aky) is
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To achieve the response described in Eq. (2), we aim for the
second harmonic amplitude around Ak, to be proportional to
the square root of the intensity 7,(Ak), i.e.,

LAk s (&)

2(Ak) = cos

where L; < L and s are constants. A naive approach would sug-
gest to choose functions ¢(z) and g(z) such that the expression
sin(4(z))é?® would be equal to the Fourier transform of
2(Ak). However, FT{g(Ak)} contains three delta functions, as
shown in Fig. 1(b); hence this modulation pattern cannot be fab-
ricated in a real nonlinear crystal. However, we can broaden these
delta functions by convolving them with a rect function of width
Zy, so that the nonlinear modulation would be possible by
electric field poling of ferroelectrics, as illustrated in Figs. 1(c)
and 1(d). We then choose ¢)(z) and g(z) according to the follow-

ing equation:
IFT{g(Ak)} @rect(Z)
maxHIFT{g(A/e)}@)rect(Z%) } )

where Zy = L - L;. Solving for ¢(z) and ¢(z) and substituting in
Eq. (3), we obtain

sign (COS(Akoz—}-ﬂ) -4/ 1- (7max(§)0'5)> 2) |Z| <%

: .
sign(cos(A/eoz)— 1—(@) > Ll-TZO<|Z|<§

@)
The upper row describes the modulation pattern in the middle
section of the crystal, and the bottom row describes the modu-
lation pattern near the two edges of the crystal. There is a constant
duty cycle and phase in each one of these three sections. The cen-
tral section has a 7 phase and a different duty cycle with respect to

h ipheral sections. Wh hoose L, = 2 L these th

the two peripheral sections. When we choose Z; = 5L these three

sin(zg(z))é?@ = (6)

d(z)=

separate sections cover the entire length of the crystal.
The amplitude around Ak, will therefore be
ZZOKd 33

max(s, 0.5)7

AV (Ak) = g(Ak - Aky) x sinc (% [Ak - A/eo]>.

@
The efficiency is proportional to the square of the amplitude,
hence to g?(Ak - Ako)sincz(% [Ak - Akg]), and therefore the

L
AP (Ak) = 2k, / " sin(nq(z))d?@ Bk Adz (4 power of the second harmonic is equal to zero for Ak - Aky =
T J4 + L% cos™!'s. The multiplication with the sinc function does not
A
@ ak) o (cos 0518k —5)2 P FT{cos 0.5L,8k — s} ° (c) §
: «—> : >
i Zo zZ
i —
......... > H »
L L, 2z (d)
4cos~i(d)/L, Dk i l =

2 2

Desired Second harmonic
intensity

Fig. 1.

Desired amplitude Fourier
transform (in z space)

Super Oscillatory Crystal

Periodically Poled Crystal [I]]]]]]]]]]]]]]]]]]]]

Design process. (a) Desired intensity profile, (b) desired amplitude Fourier transform, (c) designed amplitude Fourier transform after

convolution with rect function, and finally (d) resulting poling design in comparison with a standard periodically poled crystal.
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change the central lobe width (the super-oscillation) in
22 (Ak - Aky), since the central lobe of the sinc is wider than that
of the super-oscillatory function. As s approaches 1, the width of
the converter’s central lobe, Lil cos!s, gets smaller and smaller.
That is, by increasing s one can achieve an arbitrarily small width,
using crystal of size L, unconstrained to s. This is not without
penalty, since the power of the generated wavelength is decreasing
as (1/s-1)% at Ak = Ak, (the center of the oscillation).
Figures 2(a) and 2(c) show the simulated normalized efficiency,
as a function of pump wavelength and crystal temperature, for a
10 mm periodically poled KTiOPO, crystal for doubling
1550 nm radiation and for a super-narrow design, with s =
0.68 and Z;, = 3.3 mm. This converter’s central lobe width is
26% smaller than the side lobes of the periodically poled sinc
function, and 58% smaller than the sinc main lobe. This narrow
response enables high-resolution nonlinear filtering, for example,
in sum-frequency processes, as we will discuss later.

In order to test this concept, we designed and fabricated a crys-
tal with the modulation pattern described by Eq. (7) and mea-
sured its spectral and thermal bandwidths. The crystal was
designed for doubling 1550 nm pump light based on an e-ee
process (both the pump and SH are polarized along the crystal’s
Z direction), at a temperature of 100°C. A 10-mm-long, 1-mm-
thick KTP crystal was electric field poled according to the
super-narrow design algorithm, with parameters s = 0.68 and
Zy = 3.3 mm, resulting in three sections of identical 3.3 mm
length and with a central poling period of 24.7 pm. The central
section had a duty cycle of 0.5, whereas the two outer sections had
a duty cycle of 0.26. For comparison, a parallel channel of the
same crystal was periodically poled with a period of 24.7 pm
and a duty cycle of 0.5. Each one of the two channels had a width
of 1 mm. The pump beam was generated by a tunable diode
laser, followed by an erbium-doped fiber amplifier and a fiber
polarization controller. It was modulated using a chopper and
focused to a waist of 62 pm in the middle of the crystal. The
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Fig. 2. Normalized efficiency. (a) Simulated conversion efficiency of a
Gaussian pump beam in a 10 mm KTP crystal with a super-oscillation
design (in solid green), in comparison with periodically poled crystal
(dashed blue), for both a waist of 62 pm and 4, = 1550 nm.
(b) Experimental results for the same parameters. (c) Simulation and
(d) measurements of normalized efficiency versus crystal temperature,
at wavelength of 1555 nm. All graphs are normalized to the peak effi-
ciency of the sinc response of the periodically poled crystal.
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crystal was held on a temperature-controlled mount. The second
harmonic power was measured using a silicon detector connected
to a lock-in amplifier.

Figure 2(b) presents the measured conversion efficiency versus
the pump wavelength at a fixed crystal temperature of 50°C. This
temperature was different from the design temperature of 100°C,
probably owing to the limited accuracy of the Sellmeier equations
that we used in the design process [20] (a different Sellmeier equa-
tion [27] gave a poorer match). A spectral bandwidth of 1.1 nm is
observed, 39% smaller than the 1.8 nm width of the sinc side
lobes in the reference periodically poled channel. The super-
oscillation peak is also 69% narrower than the 3.6 nm width
of the sinc’s central lobe.

The difference between the measured width (1.1 nm) and the
theoretical calculation (1.4 nm) can be explained by systematic
error in domain width; for example, if each domain in the crystal
with positive sign of the nonlinear coefficient were wider by 1 pm
with respect to the design (e.g., duty cycle of 0.54 (0.3) instead of
0.5 (0.26) in the central (outer) region of the crystal), this would
effectively increase the value of s in Eq. (5) with respect to the
cosine amplitude, thereby leading to a narrower bandwidth that
is consistent with our measurements.

The narrow response can also be seen as a function of the crys-
tal’s temperature, which changes the phase-matching conditions
owing to the thermal dispersion of the crystal. Simulation and
experimental results of the temperature dependence for both
periodically poled and super-oscillatory crystal are presented in
Figs. 2(c) and 2(d). The measured temperature width of the
super-oscillating channel was 7°C, compared with the sinc side
lobe (central lobe) width of 12° (24°) in the periodically poled
channel. This is compared with simulation values of 12° for
the super-oscillation and 16° for the periodically poled side lobe.
The differences between the simulation and measurements can be
due to inaccuracies in the Sellmeier equation, and they are ob-
served in both the periodically poled and the super-oscillating
cases. However, the same ratio of super-oscillation to sinc side
lobe width remained between the measurements versus wave-
length and versus temperature, which indicates that the super-
oscillation exists in the same way over temperature. We note that
the thermal dispersion measurements were performed at a slightly
higher pump wavelength of 1555 nm, in order to shift the central
temperature point to 80°C, thereby enabling easier characteriza-
tion of the thermal response with our experimental setup.

By measuring the second harmonic power as a function of the
pump power we derived a conversion efficiency of 3.4 x
1074% per W for the super-oscillation crystal at the optimal wave-
length of 1550.8 nm. For comparison, the peak efficiency of the
periodically poled reference channel was 4.3 x 1072% per W, and
the first side lobe efficiency is 2.5 x 103% per W. The theoretical
conversion efficiencies are 2.4 x 103% per W, 0.17% per W, and
6.1 x 1073% per W, respectively. The experimental efficiency of
the super-oscillation peak is therefore decreased by a factor of
0.0079 compared to the sinc main lobe’s peak and 0.14 compared
to the first side lobe peak. The 1 pm domain broadening error that
we mentioned before can also explain the difference in the ratio
(of the super-oscillation peak to the sinc peak) between the exper-
imental and theoretical predictions.

In the designs so far, the efficiency is rapidly increasing beyond
the super-oscillation region. This could generate a problem when
the desired signal to be filtered is not very narrow, which raises the
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Fig. 3. Simulation for isolated super-narrow peak design using func-
tion from Eq. (9) (solid green) with L =40 mm, Z; = 8 mm,
sp = 0.8, 5, = 0.08, for KTP and 1550 nm pump; compared with
the periodic design of a crystal of the same length (dashed blue); and
design using ¢ function of Eq. (5) (point-dashed red) with
L =40 mm, Z, = 13.3, s = 0.68.

need to push these side lobes away from the super-oscillation area.
This can be done, for example, by using prolate spherical wave
functions (PSWFs) [28,29]. We present here a different approach
to this problem. Instead of the function in Eq. (5) we can use the
following function:

LAk 2
2,(Ak) = (cos 14 - 51> -5, (9)

where 0 < 51, 5, < 1. Using the exact same method, the efficiency
will be proportional to g3(Ak - Aky)sinc? (% [Ak - Alky)).
Roughly, s; controls the central lobe width, and s, controls
the height and the width of the first side lobes. Figure 3 shows
the resulting normalized efficiency. The same process can be re-
peated to push the side lobes even further, b{ using a higher order
of the function series, g5(Ak) = ((cos %/e -5 =)t -5
however, each order results in a rapid decrease of the peak of
the oscillation.

In this Letter, we have demonstrated a new method for creat-
ing an arbitrarily narrow frequency converter, which, unlike the
conventional nonlinear crystals, is no longer determined by the
crystal’s length. We implemented this concept experimentally by
modulating the nonlinear coefficient of a KTP crystal using the
electric field poling method and demonstrated super-oscillation in
the converter frequency response—as a function of the pump
wavelength and as a function of the crystal’s temperature.
While here we utilized the concept of super-oscillation to design
a frequency doubler with an isolated peak in the frequency con-
version spectrum, the method can be further extended using
different super-oscillating functions [28,30].

In this work we demonstrated narrow bandwidth in second
harmonic generation, but the same method can be readily used
for other types of quadratic nonlinear interactions such as sum-
and difference-frequency generation. An interesting possibility is
sum-frequency generation of two nearby pump wavelengths. In a
regular crystal, the sum-frequency signal is created together with
two unwanted second harmonic signals from each of the two in-
puts. However, we can filter out these second harmonic signals by
placing the two pump wavelengths at the zero-efficiency nodes of
the efficiency curve. A super-oscillation crystal enables us to
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achieve this result in a crystal that is much shorter with respect
to a regular crystal. Another interesting extension is to improve
the efficiency of the super-oscillating converter by using high
pump power. The SO converter can provide conversion efficiency
of 7% with relatively modest peak power of 3 kW, but at higher
pump power the undepleted pump approximation [Eq. (1)] no
longer holds and the spectral shape is distorted. We believe that
this work opens exciting new possibilities for nonlinear processing
and nonlinear filtering of optical signals in optical communica-
tions, spectroscopy, and quantum information applications.
Moreover, this concept can be extended to other types of
nonlinear interactions that require phase matching, e.g., nonde-
generate four-wave mixing, as well as to linear systems that require
coupling between waves that have different wavevectors, for
example, coupling between a free-space beam and either a wave-
guide mode or a surface plasmon polariton wave.
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